

HPC.NRW in a Nutshell: HPC Architectures Basics

What is a supercomputer and how can I use it?

Tim Cramer

GREAT COMPUTING COMES WITH GREAT SUPPORT.

Agenda

Key question: What is a supercomputer?

AND

What makes it different from your laptop?

HPC.NRW in a Nutshell | HPC Basic Architectures | Tim Cramer

What is a core?

(a more technical perspective)

Processor Block Diagram

• 15 cores, 30 threads, 2 integrated memory controllers

© 2014 IEEE International Solid-State Circuits Conference

5.4: Ivytown: A 22nm 15-core Enterprise Xeon® Processor Family

6 of 41

Processor level parallelism

- Parallelism at processor/ instruction level
 - Pipelining (overlap in execution: fetch, decode, execute)
 - Superscalar (redundant arithmetical units: Multiplication, Addition, ...)
 - SIMD execution (e.g. 512 bit registers, AVX-512)
- Programming techniques
 - Code modifications: Unrolling, Cache reuse
 - Compiler optimizations

What is a node?

Node in a supercomputer

- A node may contain
 - One or more (multi-core) processors
 - Memory hierarchy (caches, disks, etc.)
 - Interconnects, power supply, fans, ...
 - Accelerators
- Multicore Designs
 - Early multicore design
 - Uniform Memory Architecture (UMA)
 - Flat Memory design
 - Recent multicore design
 - ccNUMA (Cache Coherent Non-Uniform Memory Architecture)
 - Memory Interface + HT/QPI provides inter-socket connectivity

UMA

NUMA

What is a cluster?

13

What is a compute cluster (supercomputer)?

Cray I, 1974

CLAIX (RWTH Aachen University), 2019

Frontier (Oak Ridge National Lab), First official exascale system, 2022

- HPC market is dominated by distributed memory multicomputers (clusters)
- Many nodes with no direct access to other nodes' memory

How can I program for a complete cluster?

System level parallelism

- Example: Domain decomposition in CFD: Mapping of 3D mesh to the processors
- Programming techniques
 - Data parallel approach
 - Distribute data structures
 - Parallel algorithms
 - Explicit data exchange (MPI)

What is an accelerator?

What is an accelerator?

Comparision CPU ⇔ GPU

- GPU-Threads
 - Thousands ("few" on CPU)
 - Light-weight, little creation overhead
 - Fast switching
- Lots of parallelism needed on GPU to get good performance!

Comparision CPU \Leftrightarrow GPU /2

Different designs

ALU
ALU

ALU
ALU

L2

<u>CPU</u>

- Optimized for low latencies
- Huge caches
- Control logic for out-of-order and speculative execution
- Targets on generalpurpose applications

<u>GPU</u>

- Optimized for data-parallel throughput
- Architecture tolerant of memory latency
- More transistors dedicated to computation
- Suited for special kind of apps

How can I program a GPU?

Example:
 Offloading approach

How to use the complete supercomputer

Threads vs. Processes vs. Accelerators

Cores *within* a node: You can use threads or processes to use all cores. Threads working on the same address space, process on their own (virtual) address space.

Node 1	Node 2	
CUDA / OpenMP / OpenACC GPGPU	CUDA / OpenMP / OpenACC GPGPU	
OpenMP Shared memory 0 1 2 3 4 5 6 7 8 9	OpenMP Shared memory 0 1 2 3 4 5 6 7 8 9	
	MPI	

Threads vs. Processes vs. Accelerators

Threads vs. Processes vs. Accelerators

Accelerators: "**Threads**¹" can be used within an GPGPU. These threads do not use the same memory as the host system.

	Node 1		Node 2
	CUDA / OpenMP / OpenACC GPGPU		CUDA / OpenMP / OpenACC GPGPU
reads ¹ " n an nreads do memory n.	OpenMP Shared memory 0 1 2 3 4 5 6 7 8 9		OpenMP Shared memory 0 1 2 3 4 5 6 7 8 9
		MPI	

¹ Depending on vendor: Concept of "thread" is different to CPUs.

Questions?

HPC.NRW in a Nutshell | HPC Basic Architectures | Tim Cramer

27